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Introduction

Geographical Information Systems are excellent vehicles for storing, manipulating and
displaying spatial data, but frequently lack analytical capability, or are designed to answer the
sorts of questions that archaeologists do not commonly ask. To make the best use of them,
therefore, archacologists may have to use additional software that is capable of answering
more relevant questions, through a range of techniques grouped together under the heading of
spatial analysis (Hodder and Orton 1976). The aim of this paper is to present some
techniques of spatial analysis, made possible by recent developments in computing power,

which may be of value to archaeologists, and to demonstrate their use in case studies.

Types of spatial data

Spatial data can be divided into four types (Bailey and Gatrell 1995, 11-18):

° point-pattern data, in which the point locations of objects are of prime interest, although
there may well be additional data about attributes of the objects (e.g. their type),

° spatially continuous or geostatistical data, for which point locations are chosen, and the
values of certain variables are observed or measured at those locations,

* area data, data which are only available for areas,

* spatial interaction data, data on flows which link a set of locations (areas or points).

O'Sullivan and Unwin (2003, 5-7) call the first two types the object view and the field view
respectively, linking them to vector and raster representations of space. This paper is concerned
only with these two types of data.

Spatial patterns derive from the operation of spatial processes, and can be seen as the
result of two sorts of variation in the process - global or large-scale trends (first-order
effects) and local or small-scale (second-order) effects (Bailey and Gatrell 1995, 32). The
latter result from spatial dependency in the process, i.e. from a tendency for values of the
process at nearby locations to be correlated with each other. In archaeological terms, this
effect might show itself in the form of clusters of sites or artefacts. Many spatial patterns are
the result of a mixture of these two effects.

Second-order processes can be divided into homogeneous (or stationary) processes
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and heterogeneous (or non-stationary) processes. A spatial process is called homogeneous if
its statistical properties are independent of absolute location, i.e. if its mean and variance do
not vary according to location. Full homogeneity further implies that the covariance
between values at two locations depends only on the distance between them (Bailey and
Gatrell 1995, 33). Techniques of spatial analysis are usually devised to explore first-order
effects and second-order variations in the mean of a process, under the assumption of
homogeneity of the variance and covariance.

A further important point is that the nature of spatial patterning can depend on the
scale at which it is examined. Since a spatial pattern can demonstrate completely different
characteristics at different scales, any characterisation of a pattern must make it clear at
which scale it has been observed. Modern techniques of analysis exploit this property by

seeking the scales at which certain characteristics are most pronounced.

Point-pattern analysis

A brief history

Early applications of point-pattern analysis were made in the field of ecology, and were
based on either a quadrat approach (Greig-Smith 1964) or a nearest neighbour approach
(Clark and Evans 1954). Pioneering attempts to apply such techniques in archaeology (for
example, Dacey 1973; Whallon 1973; 1974) were reviewed in a general study of spatial
analysis in archaeology (Hodder and Orton 1976). This also included ideas and techniques
‘borrowed' from geography and applied at regional level, in contrast to the ecological
models which tended to be applied at intra-site level. There followed a series of innovations
(e.g. Johnson 1977; Berry et al 1984; Whallon 1984; Barcel6 1988; Blankholm 1991). A
slightly more detailed account can be found in Orton (2005).

Problems of conventional approaches

A main problem is that of 'edge effects’; some analytical techniques are based on the
assumption of a theoretically infinite study area, while all surveys or excavations have
boundaries or 'edges'. The need to modify techniques to allow for such effects has been a
major theme in spatial analysis.

The quality and internal consistency of any particular dataset will not only affect the
choice of technique, but will also determine the suitability of the dataset for spatial analysis at
all. In practice, this means that spatial analytical techniques are best suited to small discrete
datasets, preferable collected by a single individual or organisation over a relatively short
period of time. This argument favours the use of intra-site spatial analysis over inter-site or

regional spatial analysis, although archaeologists study patterns over a wide range of scales.
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Developments in statistical theory
While these developments were taking place in archaeology, there were parallel
developments in statistical theory, associated in Britain with Ripley (1976; 1977; 1981) and
Diggle (1983; 2003). They were based on the idea of modelling the stochastic processes that
produce spatial patterns, and introduced the K function as a tool for characterising spatial
patterns. The K function is defined by
A K(h) = E(#(events within distance & of an arbitrary event)),

where # means 'the number of', E( ) denotes an expectation, and 1 is the intensity or
mean number of events per unit area (assumed constant) (Bailey and Gatrell 1995, 92). A
related function, the L function, was found to be a useful indicator of clustering at particular
scales (Besag 1977). It was defined by

Lw\K® [ -n (Bailey and Gatrell 1995, 94).

Initially, the K function was defined for the distribution of a single type, but later the
bivariate function, the cross K function, was defined by
1 Kii(h) = E(#(type j events <h of an arbitrary type i event)),

with the analogous cross L function

iij (h)= Kl-j (h)/n -h (Bailey and Gatrell 1995, 120-1).

These functions are surprisingly similar to local density analysis (Johnson 1977), but
their exploratory use was based on a plot of K or L against 4, looking for peaks (indicating
clustering at scale h) or troughs (indicating regularity at scale /) in the L function. Edge
effects were recognised and accommodated into the theory, and it became possible to
calculate confidence zones for K and L, so that the significance of any observed clustering
or regularity could be assessed (Besag and Diggle 1977).

A natural development is to relax the conditions under which techniques such as K and
L functions can be used. Their use is based on the assumption of a homogeneous and
isotropic point process; there may well be practical reasons why this assumption does not
hold. Pélissier and Goreaud (2001) suggested a three-stage approach to such problems:

. Detection of possible heterogeneity through the observation of a peak in the L function
at large scales,

e Division of the study area into homogeneous sub-regions,
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. Separate analysis of each sub-region.
They also demonstrated a useful tool (proposed by Getis and Franklin 1987) of
mapping the values of Li(h) across a study area to show local variation at a range of scales.

The case studies of their applications are entirely ecological, concerned with forestry.

ADE-4 (ADS) - what it is and what it does
The ADE-4 (Ecological Data Analysis) package is a set of tools for exploratory data
analysis, available from the University of Lyon, France (pbil.univ-lyonl.fr/ADE-4/ ADE-

4.html) which can run on either Windows or MacOS. Most modules are bilingual (French
and English). Its ADS (Spatial Data Analysis) module contains three programs: Ripley (for
univariate analysis), Intertype (for bivariate analysis) and ADSutil (for data manipulation).
Various plotting routines within the package, such as Curves and Plot, are used to display
the output. Ripley calculates K and L functions and the data needed to map the L function
across the study area. Intertype calculates cross K and cross L functions, and enables the
cross L function to be mapped. Edge effects are dealt with according to Goreaud and
Pélissier (1999), and the general approach is as described by Pélissier and Goreaud (2001).

The programs are well documented, with worked examples.

Case study

The case study is Barmose I, an early Maglemosian (mesolithic) site dated ¢. 7500-6000 b.c.
and located in Barmosen (Barmose Bog) in South Zealand, Denmark (Johansson 1971;
1990). The excavated area was almost 100 sq. m., in an irregular shape. There is evidence
for the presence of a hut floor with a single internal hearth, but its outline can only be
approximated (Blankholm 1991, 185). All artefacts, tools and ecofacts were recorded in
three dimensions to the nearest centimetre, from a 'culture layer' up to 5 cm thick. The
dataset consists of the location and class of each of 470 flint artefacts that had been plotted
exactly; the numbers in each class are shown below. The data were stored as a tab-separated
text file with three columns: x-coordinate, y-coordinate, class type. The class codes and

counts of artefacts are as follows:

Class code class abbreviation count
1 scraper SCR 38
2 burin BUR 25
3 lanceolate microlith LAN 36
4 microburin MIC 16
5 flake axe FLA 28
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6 core axe CAX 4

7 square knife SQK 192
8 blade/flake knife KNI 16
9 denticulate/notched DEN 26
10 core COR 80
11 core platform CPL 9

The dataset has been analysed using the techniques of K-means Cluster Analysis,
Unconstrained Clustering, Correspondence Analysis and Presab (Blankholm 1991, 183-205).

The new analyses (for a detailed account of which see Orton 2005) comprised:

e a K function and an L function for each class

e amap of the L function for each class

e across K function and a cross L function for each class with each other class
e amap of the cross L function for each class with each other class.

The functions were plotted at 0.1m intervals from 0.1m to 3.0m, and maps of the L
functions and cross L functions were produced at the same interval. This gave a wealth of
graphical output to be interpreted. Examples of a K function, an L function and a cross L
function map are shown as Figs 1-2.

The horizontal interval is 0.1m; curve 1 represents the data and curves 2 and 3 delimit
a confidence zone for a uniform distribution. Evidence of aggregation can be seen between
0.6 and 0.9m.

The first step in interpretation was to look at the K and L functions. The values of the
functions for 4 = 0.1m were ignored, as they could be unduly influenced by rounding in the
recording of locations. The functions revealed strong aggregation at large scales for all
classes, a clear indication of spatial inhomogeneity in the data, and an indication that the
space should be divided for finer-grained analysis.

To proceed further, separate analyses of the core and peripheral areas are needed. The
boundary between the core area (densezone) and the periphery (outerzone) was determined by
visual inspection of the maps of the L functions, together with plots of artefact classes. More
sophisticated approached to this division (Ripley and Rasson 1977) were felt to be unnecessarily
complicated here. The Ripley analyses of the densezone (carried out at up to 4 = 1.5m) showed
aggregation for burins, flake axes, square knives, cores and possible scrapers. In each case
maximum aggregation seems to occur around z = 0.6 to 0.8m. There are no instances of
segregation (uniformity), except possibly for scrapers at 4 > 1.0m. The maps of the L functions
show that the classes which show aggregation do so in different parts of the densezone; scrapers
in the north, south-west and south-east, burins in the south-centre, flake axes in the west, square

knives in the north-centre and cores in the east.
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Fig. 1 (left) Example of a K function: burins in the densezone. (right) The corresponding L function.

The Ripley and Intertype analyses of the densezone are summarised in Table 1.
Aggregation between two classes is rare, occurring only between burins and microliths, and
possibly between microliths and denticulates (in both cases at scales above 1.3m). Flake knives
are the most consistently segregated class (showing segregation from burins, square knives,
denticulates and cores at various scales), followed by scrapers which show segregation from
microliths, square knives and cores. In contrast, blade knives show no significant relationships
with other classes (which may just reflect how few they are).

The corresponding analyses for the outerzone are not presented here, but can be found
in Orton (2005).

The outcomes were compared to Blankholm's (1991, 203) results, showing both
similarities and differences (Orton 2005). A more general insight is that, although some clusters
of different types do overlap, the level of aggregation between different types across the whole
site is low. This suggests that these overlaps may be due to repeated use of the same space for
different functions, rather than the association of the types together in the same function.

Compared to the other techniques available for point pattern analysis, ADS has both
advantages and disadvantages. It is good at examining variation across a range of scales,
and produces rich graphical output for interpretation. It copes well with edge effects, and
does not rely on data-smoothing, which tends to create spurious patterns.

The quantity and variety of the graphical output of ADE-4 makes it very suitable for an
'interactive' approach, in which specialist questions are posed and answered, the output
giving rise to fresh questions. It may be less suited to providing a single definitive 'result’,

e.g. in terms of definitive zoning of the site.
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Fig. 2 The L function map corresponding to fig. 1. Each symbol represents the location of a burin. Hollow
squares indicate 'low' L values (i.e. segregation), and shaded circles represent 'high' L values (i.e.
aggregation). The size of the symbol reflects the strength of the pattern. The ‘thumbnail’ maps are at
0.1m intervals of h, from 4 = 0.1m (top left) to # = 1.5m (bottom right). Strong aggregation can be seen
between i = 0.6 and & = 0.9m, but even here some burins (to the west) are segregated.

Its main drawback is its implicit reliance on a hypothesis-testing paradigm, which is
apparent in the confidence zones for the L and cross L functions, and which forms the basis
of the L function maps. As always, such an approach is much influenced by sample size, and
the significance of a pattern can reflect the number of artefacts in a particular class as much

as the nature of the pattern itself.

Spatially continuous (geostatistical) data
History
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Local class
SCR BUR LAN FLA SQK KNI DEN COR
SCR A? ns S ns S ns ns S
0.8m 0.4- all 0.5m
S 0.8m
>1.0m
BUR ns A ns S ns ns ns ns
0.6-0.9m 0.5-0.8m
LAN ns A ns ns ns ns A? ns
% >1.3m >1.3m
< | FLA ns S ns A S ns S A
% 0.5-1.1m 0.3-1.0m | 0.1,0.4m 0.5m 0.4m
m >1.4m
SQK S ns ns S A ns ns ns
0.2m 0.2m 0.2-1.3m
>1.3m? >1.4m
KNI ns ns ns ns ns ns ns ns
DEN ns ns ns S ns ns ns ns
0.4, 0.8m
COR S ns ns S ns ns ns A
0.4,0.6m 0.3m 0.7m

Table 1 Relationships between tool classes in the densezone, as expressed by the K and L functions. The
diagonal elements refer to the Ripley analyses.

A = aggregated, S = segregated (the numbers show the scales at which these occur), ns = no significant
relationship.

As the name suggests, techniques for analysing this type of data have been developed
mainly in the geological and earth sciences (Howarth 1983), and have only recently come to
archaeology. An exception must be made for geophysical survey techniques in archaeology,
where specialised equipment for resistivity and magnetometry has long been supported by
dedicated software (e.g. Geoplot, www.geoscan-research.co. uk/page9.html). However, this
has made no impact outside its own specialised field and ideas about treating archaeological
data as explicitly geostatistical have only recently been put forward (Ebert 2002; Wheatley
and Gillings 2002), although there have been attempts to use techniques designed for this
sort of data, in an implicit fashion (see below).

One area where an explicitly statistical approach has been used in archaeology is in
predictive modelling of the locations of sites (Kvamme 1990; Kamermans, this conference).
The purpose of predictive modelling is to predict the probability of the occurrence of an
archaeological 'event' (e.g. a site) in a spatial unit (e.g. one square of a grid). It is thus an
'area data' type of technique. The approach used is to construct a relationship between the
existence of 'events' and the values of chosen independent (usually environmental)
variables, through a statistical technique such as discriminant analysis or logistic regression
(Kvamme 1990, 275-276), based on data from a subset (fraining set) of the spatial units.

This function can be used to predict occurrences in other units of the study area.

Problems

10
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Problems arose in early experiments (see Hodder and Orton 1976, 164-174), because either
the techniques were too strongly model-based, or they were trying to perform unhelpful
functions on the data. An example of the former is the attempt to fit trend surfaces to the
distribution of a class of Roman pottery in southern England, which gave very strange
results if extrapolated beyond the confines of the data. Smoothing is an example of the
latter: archaeological data (for example, artefact distribution patterns) are frequently
discontinuous, and there is a temptation to smooth them to make them more continuous, and
so more amenable to geostatistical techniques. This seems fundamentally misplaced -
archaeological data are often already smoothed (e.g. by site formation processes) and need
rather to be 'sharpened’, than smoothed further (Whallon 1984).

Variograms and kriging

The second-order patterns in spatially continuous data are often at least as interesting as any
first-order patterns. We used K functions to study the second-order properties of point pattern
distributions; the corresponding statistics for spatially continuous data are known as
covariance functions or covariograms. The covariance function C(h) is defined as the
covariance between the values of a spatial variable at locations that are at a distance & apart.
This definition only makes sense if the variable is both stationary, i.e. if its mean and variance
are constant across the whole study area, and isotropic, i.e. if C(h) depends on the value of i
and not on its direction. If the variance of the variable is o2, then the corresponding
correlation, p(h) = C(h)/c? is known as the correlogram. Finally, the variogram is derived
from the correlogram by the formula y(h) = o2 - z(h). All three functions give much the same
information, but the variogram is the one usually employed (Bailey and Gatrell 1995, 161-
166). A variogram is characterised by four parameters: its model (for example, spherical,
exponential, power, or gaussian, or a combination of them, see Bailey and Gatrell 1995, 179),
its range (the value of 4 at which the curve 'levels off"), its si/l (the value of y(h) at which the
curve levels off, or towards which it converges), and its nugget (the value of y(h) at h = 0;
non-zero values indicate discontinuity in the data).

The main purpose of kriging is to interpolate values of variables at points that were not
sampled. The name derives from the South African mining geologist, D.G. Krige, who
developed an early version of the approach. The simplest estimate of the value of a spatial
process at a chosen point would be its overall mean, or a value based on an observed trend.
Kriging uses knowledge of the autocorrelations in a dataset to improve on this, by adding an
estimate of the second-order effects, based on the values observed at the data points (Bailey
and Gatrell 1995, 183-199). The addition is a weighted linear combination of the residuals at

the data points, and carries an estimate of the likely error (the mean square prediction error).

11
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For computational reasons, it is often the practice to use only data points within a search
neighbourhood of the point where a predicted value is required. If a constant mean value is
assumed, the technique is known as ordinary kriging; if a trend is assumed, the term universal
kriging is used. If an estimate is required, not at a point location, but the average value over a
small area or block, the technique of block kriging can be used (Bailey and Gatrell 1995, 208,
210-212). Although its use was suggested as early as the 1970s (Zubrow and Harbaugh 1978),
kriging has been little used in archaeology. Interest has recently been revived by Ebert (2002).

Case studies
The first case study is a simple illustration of the use of variograms as a descriptive tool. The
data are raw phosphate readings (mgP/100g) from site L.S165 of the Laconia Survey in Greece
(Buck et al 1988). Readings were taken at 10m intervals on a 16 by 16 grid; a few
observations are missing. The data file is in the standard Geo-EAS format (see www.ai-
geostats.org/software/Geostats_software/geoeas.htm), and the software used is Variowin 2.21
(available from www-sst.unil.ch/research/variowin/; see Pannatier 1996). Its modules include:
e Prevar2D.exe, which computes a pair comparison (.pcf) file from a Geo-EAS data file,
»  Vario2DPexe, which carries out exploratory variography in 2D using a .pcf file,
* Model.exe, which models experimental variograms originating from vario2DP.exe, and includes
interactive modelling of geometric and zonal isotropies.
Use of Vario2DP shows that there is considerable autocorrelation, but that it is not

isotropic, i.e. it varies according to the direction. The variogram for the north-to-east sector,
Variable: phosphate | GF: 1.5562e-03

Gamma(h): 345.7043 + 550.011 Exp. 118.8(h)
Dir.(1): 0 | anis.(1): 1

¥ (Ih}) Omnidirectional
| ° .
810
720
630

540

450
360

270 |-
180 -
90

0 1 1 L 1 1 >
0 20 40 60 80 100

Ini
Fig. 3 Variogram and fitted exponential model for the Laconia dataset.

12
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for example, increases steadily throughout, levelling off at about 80m, while that for the
east-to-south sector peaks at about 60m and then declines. The Model module is used to
empirically fit various models to directional variograms. In the case of an omnidirectional
model, a good fit was achieved by an exponential model with a nugget of about 350, a sill of
550 and a range of 120m (Fig. 3). Interpretation of such models is difficult; here the high
relative nugget value (about 40%) suggests fairly low short-range autocorrelation
(indicating random noise, or possible discontinuities), but the high range suggests low
autocorrelation effects continuing over considerable distances.

Perhaps the most useful role of a variogram is as an input into kriging, which can be
used predictively. Gjesfjeld (2004) attempted to exploit this feature in a study of alternative
routes for a by-pass at Hortonville, Wisconsin, USA. The variogram (produced by Variowin
2.21) was fairly flat, with a high relative nugget effect (about 70%), indicating only weak
spatial autocorrelation. The best fit was obtained from an exponential model, and the data
appeared to be isotropic. Gjesfjeld found that the data on site locations were too sparse for
ordinary kriging, and that block kriging was preferable. It was carried out using the
Geostatistical Analyst function of ArcGIS. The outcome was a prediction map (Fig. 4),
showing the predicted densities of sites along the two suggested routes for the by-pass. On
the basis of this map, he expressed a strong preference for the northern route, as being likely

to impact on fewer archaeological sites than the southern route.

Discussion

It must be recognised that most archaeological spatial data are of the point-pattern type, at a
wide range of scales, and that genuinely continuous data area relatively rare and often
handled by highly specialised software. Both types can be downgraded to area data, with a
resulting loss of information, and intrinsically point-pattern data may in fact be collected in
this way (e.g. as counts of artefacts in grid squares). Ideally, analytical techniques should be

chosen to match the type of data, but this does not appear to always be the case, with a

.
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Fig. 4 Prediction map for route of STH15 and proposed by-passes (Gjesfjeld 2004, Fig. 22). The shading

shows the probability of the existence of archaeological sites.
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tendency to treat point-pattern data as if it were continuous. It could be argued that an
observed point pattern is only one possible outcome of a spatial process, and that we should
be interested in studying the process rather than any particular outcome. In other words, we
should estimate underlying probability distributions (e.g. through kernel density analysis, see
Barcel6 2002, 244) rather than focus on the detail of any particular dataset. Not all
archaeologists would agree with this, so if this approach is followed, the reasoning should be
made explicit to permit its discussion. Even if we do follow this view, we have to admit that
underlying distributions are likely to contain (in their original state) discontinuities, which
may well have become blurred through site formation and other processes. Techniques for
sharpening data, such as change-point analysis (Buck et al. 1988; 1996, 258-276), may
therefore be more relevant than those which assume a continuous underlying distribution.

It is therefore clear that archaeologists need to consider very carefully the exact
mathematical nature of their data, and of the questions that they are asking of them, before
choosing an appropriate technique of spatial analysis. The relative merits of competing
techniques (e.g. logistic regression and kriging) need to be assessed under a wide range of
circumstances, to provide guidance for professional archaeologists who may not have the
time, resources or inclination to tackle every spatial problem from 'square one' as it arises.
This is however not a plea for 'rules of thumb' (which have bedevilled contract archaeology

over the last decade), but for carefully thought out decision procedures.
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