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In the past two decades, chaos and complexity theories and their related tools became
extremely popular both in the hard and the soft sciences. In sociology, economy and geography,
several studies were published, developing explorations in any sort of complex adaptive
systems, cellular automata, random boolean networks, genetic algorithms and diffusion
fractals. This paper want to assess both the potentiality and a few but significant shortcomings
of this kind of studies, as they can be perceived in the current technological state of the art.
From the huge number of algorithms, theories and methods available from the
complexity sciences, I'll examine only two kinds of related issues, namely fractal dimension
and cellular automata modeling. In order to assess just the critical matters and not running
out of space and time, I won't explain the basics of each formalism, about which the readers
may learn elsewhere. So, there will be no references to Koch snowflakes, Cantor sets or the
length of the coast of Great Britain this time. As I'm not a geographer, I won't deal with
specific spatial issues such as formal conceptions of density, urban density gradients,
temporal sets and models, changes in urban settings, and the like. This is just a generic,

critical view from the computational and theoretical perspective.

Fractal dimension
Fractal analysis of cities started with Fractal cities by Batty and Longley (1994). In this
now classical book, out of print now, they note that 'In defining the physical form of the city,
its edge or boundary is the most obvious delimiter of its size and shape'. In their book, and
the papers on which it is based, they calculate the fractal dimension of various towns and
cities (notably Cardiff) and compare their measurements with those recorded by other
researchers. In the case of Cardiff, they examine the change in its fractal dimension over
time and use this as an indicator of the changing structure of the city from the late 19"
century to the middle of the 20" century, based on available map data. The principal method
that they use to calculate fractal dimension is known as the 'dividers method'. Although
performed in this instance using a computer program, the method is based on a manual
technique originally employed by Richardson.

Using this method, Batty and Longley show how the fractal dimension of the urban
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boundary of Cardiff had decreased from 1.141 in 1886, to 1.117 in 1901, and 1.109 in 1992.
This indicates that the boundary of Cardiff became less irregular over the time, contrary to 'the
traditional image of urban growth becoming more irregular as tentacles of development occur
around transport lines' (Batty and Longley 1994:185). They link the period of greatest change
in fractal dimension (1886 to 1901) to the greatest changes in transportation technology.

The also analyzed the changes in the uses of land over time. One of the problems that
Batty and Longley note over their analysis of the fractal dimension of different land use
types is that the land parcels that they examine share common boundaries: for example, a
residential district may be adjacent to an commercial/industrial zone. In defining the
boundary between these two land use units they must, by definition, share a common
boundary. In that sense, the measures of fractal dimension that are obtained for each land
use are not strictly independent. Despite this, Batty and Longley suggest that the method
remains valid and that a comparison of the fractal dimension of different land use types is
instructive, both in terms of a comparison between different towns or cities and as a
surrogate measure for other phenomena of interest.

After that study, a long list of fractal dimension analysis were made, applied both to
contemporary data and historical maps. Today we have a lot of information about typical
and not so typical fractal dimension values. The fractal dimensions of US and international
cities, for instance, have values ranging from 1.2778 (Omaha]) to 1.93 (Beijing). Scientist
also found that the fractal dimension of large contemporary cities tends to cluster around the
latter value. Studies of urban growth of London between 1820 and 1962 show that fractal
dimensions for this period vary from 1.322 to 1.791. The fractal dimensions for the growth
of Berlin in 1875, 1920 and 1945 are 1.43, 1.54 and 1.69, respectively. In sum, there is no
agreement between the Cardiff and the global data, but the analysts are confident that a
general trend of fractal dimension change will be discovered some day.

Since the days of the first Batty studies, only ten years ago, many things happened. For
the average user, the researcher and the student there are several available software options
for measuring the fractal dimension: HarFA, Fractal Analysis System, Kindratenko's Fractal
Analysis of Contour, Pierre Frankhauser's Fractalyse, Bar-Ilan's Fractal Dimension
application, Paul Bourke's Fractal Dimension Calculator, TruSoft Benoit™, etc. There are
also fractal dimension facilities embedded into some general purpose GIS software, such as
Geostat Office, Exeter GS+, SpaDiS™ and others. Before putting some of them to work, I
want to review some problems with fractal dimension measures.

First of all, let me point out that there is not a single way of measuring the fractal
dimension of an object. There are several widely differing definitions and measuring

options. Some of them are almost impossible to calculate in computers, others are rather

94



The Impact of Chaos and Complexity Theories in Spatial Analysis

straightforward; the best known measures are Haussdorf dimension, box counting, perimeter
area, rule dimension, information dimension, mass dimension, fragmentation dimension,
etc. All the dimensional methods have a more or less sound inner logic, but their results are
not necessarily proportional. The are many papers and books related to this issue, but the
use of the different measures is neither always clear in the non-mathematic, applied
literature, nor in the implemented software.

There are several problems around the concept of fractal dimension either. It is
possible to define the dimension of a set in many ways, some satisfactory and others less so.
It is important to realize that different definitions may give different values of dimension for
the same set, and may also have very different properties. As Falconer has pointed out,
inconsistent usage has sometimes led to considerable confusion. Some authors even
interpret the concept of fractal dimension inconsistently in a single piece of work (Falconer
1999: x). More seriously, the same could be said of many of the current pieces of software.

When doing a measure, the user has several dimension definitions, many precision
options, many different approaches. Usually, there is not such thing as the "fractal
dimension" of an object. There are no rules of thumb for chosing a quantity instead of
others. Moreover, apparently similar definitions of dimension can have widely differing
properties. It should not be assumed that different definitions give the same value for
dimension, even for simple sets. It is necessary, though, to derive the meaning of the
measure from its definition (Falconer 1999: 37).

As an example of the problems surrounding the fractal dimension concept, I'll examine
just a few cases involving the simplest of all the varieties, namely box counting. Box counting
or box dimension is one of the most widely used dimensions. Its popularity is largely due to its
relative ease of mathematical calculation and empirical estimation. The definition goes back at
least to the 1930s and it has been variously termed Kolmogorov entropy, entropy dimension,
capacity dimension, metric dimension, logarithmic density and information dimension. Box
dimension is simple and its calculation is unproblematic, but its underlying maths has several
undesirable consequences, such as overly different results for closely related, almost identical
figures. There are some known procedures to circumvent the problems, but this make the
calculation hard (as it happens with Hausdorff-Besicovich dimension).

Let's show some consequences of this state of affairs. Fig. 1 shows Sasaki's fractal
dimension calculator applied twice to the same image; the only difference is that the second
image is rotated 90 degrees. The fractal dimension for the first image was computed as
1.7167, and for the second 1.7835. It's a rather big difference by the way, considering that
fractal dimension for curves range only from more than 1 to less than 2. The implemented

four digits of decimal precision is not needed, because the user gets a significant
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miscalculation immediately after the first one. Most of the available software, including
some quite expensive pieces, deliver this sort of spurious precision stuff. For complex
mathematical or computational reasons, no doubt of it, other tools behave the same
wandering way when rotating, skewing, cropping blank borders or resizing an image a little
bit. It's no miracle than the Cardiff and the global data do not fit.

There are more to this. Fig. 2 shows at the left Kindratenko's fractal dimension
analysis tool for the second sample image. In this case, the fractal dimension computed was
only 1.40 = 1.232; this involves a huge difference with the value of 1.7835 computed by
Sasaki's application. Moreover, calculating the FD with HarFA (right) gives 1.7533 for
B+BW and 1.8762 for W+BW. For most available applications, besides, the coloring
discrimination method is not even documented. Other tests delivered even worst results: the
fractal dimension of a perfect circle was evaluated as 0.9276 (it's not a fractal indeed, ); for a
regular square, the dimension was 1.0361. Sure, the program is confused by a closed line,
but both the circle and the square should have exactly dimension 1, regardless the method
used in the calculation. If a regular square is now almost a fractal, what are euclidean and
non-fractal geometries all about?

In sum, fractal analysis in general (and fractal dimension in particular) are useful
instruments to study the spatial organization of urban and other geographical patterns.
However, the results obtained must be regarded in a comparative perspective: the single
value of the fractal dimension does not supply sufficient information in order to describe the
urban development of a city or place. My advice for researchers willing to apply fractal
dimension in their analysis, is to spot the measure in a richer framework, carefully
specifying methods and techniques, and to be aware of ill-developed and poorly

documented tools.

Cellular automata modeling
Cellular automata, introduced by John von Neumann in the 1950s, have been widely used in
simulation of all kinds of spatial issues: land use dynamics, regional scale urbanization and
polycentricity, urban socio-spatial segregation, suburban development, location analysis,
urbanism and urban growth and sprawl, complex environmental problems, percolation,
segregation, polycentricity, historical urbanization, fire propagation, soil bioremediation,
traffic simulation, etc.

As it is known, CA may have only four qualitatively different behaviors: fixed point,
periodic, chaotic and complex (Wolfram). The four kinds of behavior (not to be dealt with
here) are illustrated in Fig. 3.

CA have many advantages for modeling urban phenomena, including their down-to-
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Fig. 1 Fractal Dimension Calculator

top approach, the first-order link they have to complexity theory, their connection of form
with function and pattern with process, the relative ease with which model behavior and
results can be visualized, their flexibility, their dynamic approach, and also their natural
affinities with GIS and intra-site spatial analysis. Using CA, the geographer is fully
immersed into the chaos and complexity sciences realm.

CA urban simulation models are abstract, simplified versions of real world objects and
phenomena that may be used as laboratories for exploring ideas about how cities work and
change over time. However, the basic CA formalism is not well suited to urban and spatial
applications; the framework is too simplified and constrained to represent real cities and
places. Indeed, radical modification is necessary before CA can approximate even a crude
representation of an geographical system. Additional components and functionality are
needed.

The good news is that in GIS and urban studies, experimentation has been prolific and
innovative. The dimensions, form and structure of CA lattices have been modified and the

range of cell states has been expanded. Neighborhoods have been varied and enriched
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Fig. 2 Kindratenko tool and HarFA fractal dimension software

considerably to accommodate action-at-a-distance and other realistic connection models
beyond the simple Moore, von Neumann or Margolus types. Transition rules have also been
modified far beyond the Conway Game of Life 23/3 rule, and expanded to include notions
such as hierarchy, autonomous decisions, probabilistic expressions, utility maximization, loss
minimization, accessibility measures, exogenous links, inertia, stochasticity, weight, land
quality and cost.

By mimicking how macroscale urban structures may emerge from the myriad
interactions of simple elements, CA offer a framework for the exploration of complex
adaptive systems. But the basic CA simplicty has been both an strong advantage and a
severe limitation. If the out-of-the-box product is too simple to represent your model and
process, and if you want to add expressive power and hierarchical capabilities, the price is
high. As Helen Couclelis has written (1985: 588) "all the simplifying assumptions of the
basic cell-space model could be relaxed in principle: in practice of course, the result would
be forbiddingly complex." She thinks that one of the attractions of CA is the potential they
provide for insights into the relationships between processes at local scales and structures at
global scales. Such insight, apart from its formal and pedagogic value, also raises the
possibility of a better understanding of the fundamental dynamics of spatial systems. But
any insights which might be obtained are rapidly obliterated by the ever more complicated
refinement of speficis model elements. CAs could be realistic and subtle by programming
customized facilities and extensions; but this enrichment has a huge cost in time, money and

coding complexity. Furthermore, custom tools are not commonly useful in other projects
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using their own semantics and considering other variables.

Other drawback of geographic CA models is that they have done relatively little to
develop theory. As Torrens and Sullivan remark, claims are made that models explore
various hypothetical ideas about the city, but the reported results are often more concerned
with the details of model construction, at the expense of the theories that they set out to
explore. Some times the power of CA modeling becomes more important than the reality
being modeled. Research in urban CA modeling is becoming just that: research in modeling,
and not research on urban dynamics and theory (Torrens & O'Sullivan 2001). Besides, the
initial experiments with a technique or tool always seem to deliver "excellent results”, as an
outcome of the well know Hawthorne effect. The excellency of the case, however, is limited
to the fact that the model seems to work, and as the techniques are still on the hype the
editors will accept the paper.

Another problem pointed out by the specialists is that somewhere in the transition
from an abstract mathematical formalism to an spatial simulation tool, CA have evolved into
a class of model that bear only transient resemblance to their parents in physics,
mathematics, and computer science. The matter of modification has long been a source of
disquiet in CA modeling. Again, the concern has been that model developers may focus
their attention on the intricacies of model building with less attention paid to the reasons
why models were developed in the first place (Idem).

A most important problem, often overlook by the geographers, is that as a down-to-top
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number far greater than the 10" seconds elapsed from the Big Bang. This means that when you
try to run a model whose behavior should resemble a given process, the resemblance you are
looking for may never occur, even if you try new combinations of rules and initial states for the
rest of your life. And if the structure of states and rules falls into the chaotic or the complex
types, a tiny difference will have immense consequences: this is the realm of chaos, featuring
exponential sensitivy to the initial conditions, and affected by the butterfly effect.

In this regard, Fig. 4 shows how a similar pattern is transformed by the same rule after
only four steps. The terminal patterns are completely different. Even if CAs are deterministic,
you cannot assess the previous state of a given configuration, even knowing the transition
rule. There is no formal, established, algorithmic way to get a given pattern after a number of
steps. Finding a resembling pattern is, by definition, deceitful. There are no "similar"patterns
or rules in nonlinear complex systems either: similarity is indeed a linear concept.

In this context, it's almost senseless to try the tool as if it were a common simulation
tool, running different combinations of patterns and rules, and seeing what happen. The
problem space is too big, and the life is too short.

In sum, as applied to geographic systems or any other scientific area, CA are not a one-
tool solution for spatial simulation; fractal growth and fractal dimension are also powerful
assets for the scientist's toolkit, provided they are used with extreme care and
circumspection, and that they are accurately implemented in the developed products. In most
of the cases they aren't. There are no silver bullets. Specially when dealing with these

advanced tools, it is advisable to extreme the precautions and think twice.

Software references
Fractal Analysis of Contors - Version 1.0 © 1993-2000, Volodymyr Kindratenko
Fractal Analysis System - Version 3.4 © 1998-2002, NILGS, NARO, coded by Hiroyuki Sasaro

Fractal Dimension - Version 1.1 © 2000, Bar-Ilan University
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Harmonic and Fractal Image Analyzer (HarFA) - Version 4.9.3 © 1999-2001 Zmeskal-Nezadal, Faculty of
Chemistry, Brno
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